\qquad
\qquad
Problem: How do atoms and molecules of elements and compounds combine in chemical reactions?

Materials: Molecular Model Set, Colored Pencils

Directions: Separate the atoms by color. Each color will represent a different element. (Refer to the Data Table below). Each of the holes represents a place where the atom will bond with another atom. Bonds are formed with the wooden pegs.

Data Table:

Type of Atom	Atomic Symbol	Color of Sphere
Hydrogen	H	Yellow
Carbon	C	Black
Nitrogen	N	Blue
Oxygen	O	Red
Chlorine	Cl	Green
Copper	Cu	Purple

Procedure A:

1. Build a molecule of H_{2}. How many atoms of hydrogen do you need? \qquad
Draw a diagram (with color) to show what you just made.
2. Build a molecule of Cl_{2}. How many atoms of chlorine do you need? \qquad
Draw a diagram (with color) to show what you just made.
3. Using ONLY these atoms (the H_{2} and Cl_{2}), disconnect the atoms in the molecule and produce the molecule " HCl ". Draw this molecule.
4. If you were given one H_{2} and one Cl_{2}, what is the maximum number of " HCl " molecules that could be built with these atoms? \qquad
5. In this "recombination" of atoms, were any of the atoms not used or did you need to add any extra atoms in order to make the " HCl " molecules? Explain how this modeling of the reaction between H_{2} and Cl_{2} in order to produce HCl either obeyed or did not obey the law of the conservation of matter.

In chemistry scientists view atoms, molecules and reactions a little bit like the letters, words and sentences of a story. In this case, the atoms themselves represent the letters, the molecules (like $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl) represent the words.
6. If you were going to write the "sentence" that told the story of the reaction that you just modeled in \# 1-4, what would that sentence look like? (Write the equation. Be sure to include subscripts and coefficients to show all atoms present.)

Draw a diagram to represent the entire reaction (be sure to include reactants and products).

Procedure B:

1. Build a molecule of N_{2}. How many atoms of nitrogen do you need? \qquad
Draw a diagram (with color) to show what you just made.
2. Build a molecule of H_{2}. How many atoms of hydrogen do you need? \qquad
Draw a diagram (with color) to show what you just made.
3. Ammonia $\left(\mathrm{NH}_{3}\right)$ is used in cleaning solutions and in the manufacture of fertilizers. A molecule of ammonia contains 1 nitrogen atom and 3 hydrogen atoms. Using your above molecules ONLY (the N_{2} and H_{2}), rearrange your molecules to form a molecule of ammonia $\left(\mathrm{NH}_{3}\right)$. Can you make a molecule of ammonia yet? \qquad
What do you need in order to complete an ammonia molecule? \qquad Where do you think this atom is going to come from? \qquad
4. Make another molecule of H_{2}. Draw a diagram (with color) to show what you just made. Disconnect the atoms you just made and use them to complete your ammonia molecule. Draw a diagram of that as well. Do you have anything left over?___ If so, what? ___
5. A reaction is not complete unless ALL atoms have been used. (Reactions must ALWAYS obey the law of the conservation of matter - in other words, the same \# of atoms on the reactant side must be on the product side.) Your goal is to complete the reaction by making another ammonia molecule. In order to make another ammonia $\left(\mathrm{NH}_{3}\right)$ and use all of your atoms, construct another molecule of H_{2}. Has every atom been used? \qquad
Draw a diagram to represent the entire reaction (be sure to include reactants and products).
Write the equation to show the reaction.

What are the reactants? \qquad What is the product? \qquad

Procedure C:

(Basically you will be repeating the same procedure again for the following reaction $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{C} \rightarrow \mathrm{Cu}+\mathrm{CO}_{2}$.)

1. Build a molecule of $\mathrm{Cu}_{2} \mathrm{O}$. How many atoms of Cu do you need? \qquad How many of oxygen do you need? \qquad Draw a diagram (with color) to show what you just made.
2. Build a molecule of C. How many atoms of carbon do you need? \qquad
Draw a diagram (with color) to show what you just made.
3. When the reaction occurs, the bonds break and the atoms are rearranged so that you have the copper atom by itself and the carbon is bonded to two oxygen atoms. Do you have enough atoms to make a molecule of CO_{2} ? \qquad What do you need? \qquad
4. Build another molecule of $\mathrm{Cu}_{2} \mathrm{O}$. Now do you have enough atoms to make a molecule of CO_{2} ? \qquad If so, build it $\left(\mathrm{CO}_{2}\right)$. What do you have left over? \qquad
5. Draw a diagram to represent the entire reaction
(be sure to include reactants and products).

Analysis:

1. If you had to make 5 molecules of sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$ how many atoms of each atom do you need?

$$
\mathrm{H}=\ldots \quad \mathrm{S}=\ldots \quad \mathrm{O}=
$$

2. Balance the following equations.

